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In this paper, we characterize the redundant rigidity and the redundant global rigidity of 
body-hinge graphs in Rd in terms of graph connectivity.
Although an efficient algorithm which determines mixed-connectivity is still not known, 
our result implies that both edge-redundancy for rigidity and edge-redundancy for global 
rigidity can be checked via efficient graph-connectivity algorithms.
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1. Introduction

The aim of this paper is to characterize the redun-
dant rigidity and the redundant global rigidity of body-
hinge graphs in Rd in terms of graph connectivity. Graph 
connectivity has been extensively studied [1,13] and sev-
eral previous studies had investigated the connection be-
tween rigidity and graph connectivity in the context of 
2-dimensional bar and joint frameworks [3,8,15]. The mo-
tivation to study body-hinge frameworks is due to their 
extensive use in real-world applications such as robotics, 
engineering, material science and computational biology 
[6,22]. We now define the notion of mixed-connectivity.
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Definition 1 (Mixed-connectivity). Let k and h be integers 
such that k ≥ 1 and h ≥ 1, respectively. A graph G is 
(k, h)-connected if removing any (k − 1) vertices from G
results in a graph which is h-edge-connected.

A d-dimensional body-hinge framework is a collection 
of d-dimensional rigid bodies connected by revolute hinges
(see Fig. 1 and [17,20] for further details). We say a 
d-dimensional body-hinge framework is rigid if every mo-
tion results in a framework isometric to the original one 
(i.e. the motion corresponds to an isometry of Rd); such 
motions are called trivial or rigid-body motions. Otherwise 
a framework is called flexible [7,21]. The underlying com-
binatorial structure of a body-hinge framework is a multi-
graph G = (V , E), where V and E represent a set of bodies 
and a set of hinges, respectively. Namely uv ∈ E corre-
sponds to a hinge p(uv) (i.e. a (d − 2)-dimensional affine 
subspace) which joins the two bodies u and v . G is said to 
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Fig. 1. (a) Two bodies rotating about a connecting hinge (line) in 3-space. (b) A body-hinge framework and (c) its underlying graph G .
be realized as a body-hinge framework (G, p) in Rd , and is 
called a body-hinge graph. When a body-hinge graph G can 
be realized as an infinitesimally rigid body-hinge frame-
work in Rd , G is called rigid [17,20]. We call a body-hinge 
graph simply a graph.

Proposition 1. (See [17,20].) A graph G can be realized as a rigid 
body-hinge framework in Rd with d ≥ 2 if and only if (D − 1)G
contains D edge-disjoint spanning trees, where D = (d+1

2

)
and 

(D − 1)G denotes the graph obtained from G by replacing each 
edge by (D − 1) parallel edges.

In the following, a graph G is called h-edge-rigid in Rd

if removing any (h − 1) edges from G results in a graph 
which is rigid in Rd . The reader should keep in mind that 
rigidity (also h-edge rigidity and (k, h)-rigidity; see below) 
of a graph is ambiguous unless the underlying dimension 
is specified. Our definitions and results apply to any di-
mension d (d ≥ 2); the dimension will be specified in the 
provided examples.

We now define the notion of redundant rigidity for 
graphs.

Definition 2 (Redundant rigidity). Let k and h be integers 
such that k ≥ 1 and h ≥ 1, respectively. A graph G is called 
(k, h)-rigid in Rd with d ≥ 2 if removing any (k − 1) ver-
tices from G results in a graph which is h-edge-rigid in R

d .

Furthermore, our work has applications to global rigid-
ity. We say that (G, p) is globally rigid in Rd if every 
d-dimensional framework which is equivalent to (G, p) is 
congruent to (G, p) (see [4] for details). A graph G is glob-
ally rigid in Rd if every (or equivalently, if some) generic 
realization of G in Rd is globally rigid. A graph G is called 
h-edge-globally rigid in Rd if removing any (h − 1) edges 
from G results in a graph which is globally rigid in Rd .

We now define the notion of redundant global rigidity 
for graphs.

Definition 3 (Redundant global rigidity). Let k and h be in-
tegers such that k ≥ 1 and h ≥ 1, respectively. A graph G
is called (k, h)-globally rigid in Rd with d ≥ 2 if remov-
ing any (k − 1) vertices from G results in a graph which is 
h-edge-globally rigid in Rd .

The main result of this paper is stated in the following 
theorem.

Theorem 1. Let k and h be integers such that k ≥ 1 and h ≥ 2, 
respectively.
(1) A graph G is (k, h)-rigid in R2 if and only if G is (k, h +
1)-connected and G is (k, h)-globally rigid in R2 if and only if 
G is (k, h + 2)-connected.
(2) For any d ≥ 3, the following three statements are equiv-
alent for any graph G: (i) G is (k, h)-rigid in Rd, (ii) G is 
(k, h)-globally rigid in Rd, (iii) G is (k, h + 1)-connected.

2. Preliminaries

White and Whiteley [19] defined the infinitesimal mo-
tions of a body-hinge framework by using real vectors of 
length 

(d+1
2

)
, called screw centers. (G, p) is said to be in-

finitesimally rigid if all infinitesimal motions of (G, p) are 
trivial (see [5] for details). Tay [17] and Whiteley [20] inde-
pendently proved that the infinitesimal rigidity of a generic
body-hinge framework (G, p) is determined only by its un-
derlying graph G . A body-hinge framework is generic if its 
rigidity matrix has a maximum rank on all subgraphs [5]. 
‘Almost all’ body-hinge realizations of G are generic in Rd . 
Note that for generic frameworks, infinitesimal rigidity is 
equivalent to rigidity (see [20–22] for details).

Let G = (V , E) be a multigraph which may contain 
parallel edges but no self-loops. For X ⊆ V , let G[X] be 
the graph induced by X . For X ⊆ V , let δG(X) = {uv ∈
E | u ∈ X, v /∈ X}. For X = {v}, we shall omit the set 
brackets when describing singleton sets, e.g., δG({v}) is 
simply denoted by δG (v). A partition P of V is a collec-
tion {V 1, V 2, . . . , Vm} of vertex subsets for some positive 
integer m such that V i �= ∅ for 1 ≤ i ≤ m, V i ∩ V j = ∅
for any 1 ≤ i, j ≤ m, i �= j, and ∪m

i=1 V i = V . Note that 
{V } is a partition of V for m = 1. Let δG(P) denote the 
set of edges of G connecting distinct subsets of P . Let 
G +e = (V , E ∪{e}), for any edge e = uv such that u, v ∈ V , 
and let G − e = (V , E\{e}).

In the proof in the next section we will make use 
of the following well-known Tutte–Nash-Williams disjoint 
tree proposition [14,18].

Proposition 2. (See Tutte, Nash-Williams.) A multigraph G =
(V , E) contains k edge-disjoint spanning trees if and only if 
|δG(P)| ≥ k(|P| − 1) holds for every partition P of V .

Katoh et al. [5] showed the following proposition.

Proposition 3. (See Katoh et al.) Let G be a graph. Then, G is 
2-edge-connected if G is rigid in Rd with d ≥ 2.

Jordán et al. [4] characterized the global rigidity of 
body-hinge frameworks.
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Proposition 4. (See Jordán et al.) Let G be a graph. Then G is 
globally rigid in R2 if and only if G is 3-edge-connected.

Proposition 5. (See Jordán et al.) Let G be a graph and d ≥ 3. 
Then G is globally rigid in Rd if and only if (D − 1)G − f con-
tains D-edge-disjoint spanning trees for any edge f of (D −1)G
where D = (d+1

2

)
.

3. Proof of Theorem 1

In this section, we prove Theorem 1. For this purpose, 
we prove the following three statements. (a) For d ≥ 2, G is 
(k, h)-rigid in Rd if and only if G is (k,h + 1)-connected. 
(b) G is (k, h)-globally rigid in R2 if and only if G is (k, h +
2)-connected. (c) For any d ≥ 3, G is (k, h)-rigid in Rd if 
and only if G is (k, h)-globally rigid. When we summarize 
the above three, we will complete the proof of Theorem 1.

Proof of the only if part in (a). We show the contraposition 
of the only if part: “G is not (k, h)-rigid in Rd if G is not 
(k, h +1)-connected”. There exists a vertex set V ′ ⊂ V with 
|V ′| ≤ k − 1 such that the graph G ′ obtained by removing 
|V ′| from G is not (1, h + 1)-connected. Then, by Proposi-
tion 2, there exists a vertex partition P such that |P| = 2
and |δG ′ (P)| ≤ h. Then, removing (h − 1) edges in δG ′ (P)

from G ′ results in a graph G ′′ such that |δG ′′(P)| ≤ 1, 
which implies G ′′ is not rigid by Propositions 1 and 2. 
Thus, the original graph G is not (k, h)-rigid. �
Proof of the if part in (a). We prove by contradiction: Sup-
pose that G is (k, h + 1)-connected and not (k, h)-rigid 
in Rd . There exists a set of (k − 1) vertices in G such 
that the graph G ′ which is obtained from G by removing 
them is not h-edge-rigid. There exists a set F of (h − 1)

edges such that the graph G ′′ obtained by removing F
from G ′ is not rigid. By Proposition 1, the graph which is 
obtained from G ′′ by replacing each edge by (D − 1) paral-
lel edges does not contain D-edge-disjoint spanning trees. 
Then, by Proposition 2, there exists a vertex partition P
of G ′ such that |P| ≥ 2 and (D − 1)|δG ′′(P)| < D(|P| − 1). 
Also, |δG ′(P)| ≤ |δG ′′(P)| + h − 1 holds, thus, we have

|δG ′(P)| < D

D − 1
(|P| − 1) + h − 1. (1)

On the other hand, since G ′ is (1, h + 1)-connected, we 
have

|δG ′(P)| ≥ h + 1

2
|P|. (2)

Let us evaluate the value defined as

value(D,h, |P|) = D

D − 1
(|P| − 1) + h − 1 − h + 1

2
|P|.

Since D ≥ 3 by d ≥ 2, D/(D −1) ≤ 3/2 holds, thus, we have

value(D,h, |P|) ≤ 3

2
(|P| − 1) + h − 1 − h + 1

2
|P|

= −1
(h − 2)(|P| − 2) − 1

.

2 2
Then, by the condition that h ≥ 2 and |P| ≥ 2, value(D, h,

|P|) < 0 always holds, that is,

D

D − 1
(|P| − 1) + h − 1 <

h + 1

2
|P|, (3)

which contradicts (1) and (2). �
Proof of (b). By Definitions 1, 3 and Proposition 4, the 
proof immediately follows. �
Proof of the if part in (c). By the definition of global rigid-
ity, this part is straightforward. �
Proof of the only if part in (c). First, we shall show the 
following lemma.

Lemma 1. Let G = (V , E) be a graph such that |V | ≥ 6 and 
(D − 1)|E| = D(|V | − 1) where D = (d+1

2

)
with d ≥ 3. Then 

there exist at least six vertices of degree two in G.

Proof of Lemma 1. Let s be the number of vertices of de-
gree two in G . Then we have

2|E| ≥ 2s + 3(|V | − s). (4)

By (4) and (D − 1)|E| = D(|V | − 1), we have

2D(|V | − 1) ≥ 2(D − 1)s + 3(D − 1)(|V | − s) (5)

s ≥ D − 3

D − 1
|V | + 2D

D − 1
. (6)

By |V | ≥ 6 and D ≥ 6, we have (D − 3)|V |/(D − 1) = (1 −
2/(D − 1))|V | ≥ 18/5 and 2D/(D − 1) = 2 + 2/(D − 1) > 2. 
Then, we have s ≥ 6. �

Then we prove by contradiction: Suppose that G is 
(k, h)-rigid in Rd and not (k, h)-globally rigid in Rd . Let 
G ′ be a graph which is obtained from G by removing 
(k − 1) vertices and (h − 1) edges from G so that G ′ is 
not globally rigid. By Proposition 5, there exists a paral-
lel edge f of (D − 1)G ′ such that (D − 1)G ′ − f does not 
contain D-edge-disjoint spanning trees. Then by Proposi-
tion 2, there exists a partition P of vertices of G ′ such 
that |δ(D−1)G ′− f (P)| < D(|P| − 1). Since G ′ is rigid, we 
have (D − 1)|δG ′ (P)| ≥ D(|P| − 1). By |δ(D−1)G ′− f (P)| =
(D − 1)|δG ′ (P)| − 1, we have (D − 1)|δG ′ (P)| = D(|P| − 1).

By Lemma 1, there exist at least six vertex sets of P , 
say V 1, . . . , V p with p ≥ 6, such that |δG ′ (V i)| = 2 for 
i = 1, . . . , p. For any edge e of G\G ′ , let us consider G ′ + e. 
For the same partition P , even if e connects Vk with 
Vl , there remain at least four vertex sets V i such that 
|δG ′+e(V i)| = 2. From G ′ + e, if we remove an edge e′ , 
which is incident to such V i , G ′ + e − e′ becomes flexi-
ble by Proposition 3. On the other hand, by (k, h)-rigidity 
of G , G ′ + e should be 2-edge-rigid, contradiction. �
4. Conclusion

We characterized the redundant rigidity and the re-
dundant global rigidity of graphs in Rd in terms of graph 
connectivity.
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Our result is contrasted with the fact that the problem 
of augmenting a Laman graph (i.e., the graph correspond-
ing to a minimally rigid generic bar-joint framework in 
2-dimension – see [7]) to a 2-edge-rigid bar-joint graph 
with a minimum number of added edges is NP-hard [2]. 
By Theorem 1, in order to make any graph G h-edge-
rigid in any dimension by adding a minimum number of 
edges, we can apply a polynomial time algorithm to make 
G (h + 1)-edge-connected [12].

Furthermore, by Theorem 1, we can test whether a 
given graph is h-edge-rigid by testing whether the graph 
is (h + 1)-edge-connected in O (|E| + min{h|V |2, |E||V | +
|V |2 log |V |}) [10]. In particular for h = 2, it can be done in 
linear time [9,11,16]. Similar remark also holds for testing 
h-edge-global rigidity.

Note, this result does not imply polynomial time algo-
rithms for testing (k, h)-rigidity and (k, h)-global rigidity 
which are part of future research.
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